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Abstract

We study a vectorial approximation problem based on thin plate splines with tension involving
two positive parameters: one for the control of the oscillations and the other for the control of the
divergence and rotational components of the field. The existence and uniqueness of the solution are
proved and the solution is explicitly given. As special cases, we study the limit problems as the
parameter controlling the divergence and the rotation converges to zero or infinity. The divergence-
free and the rotation-free approximation problems are also considered. The convergence in Sobolev
space is studied.
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1. Introduction

Vector field approximation is a problem involving the reconstruction of physical fields
from a set of scattered observed data. The problem can arise in many scientific applications,
such as meteorological analysis, electromagnetic and fluid mechanics. In[2,3], Amodei
and Benbourhim introduced a family of spline minimization problems for two-dimensional
vector fields, defined byMin

(
�
∫

R2
||∇div(u)||2dx +

∫
R2

||∇rot(u)||2dx
)

u ∈ V(R2; R2) and u(xi) = ui, i = 1, . . . , N,

(1.1)

whereV(R2; R2) = D−2L2(R2)×D−2L2(R2) andD−2L2(R2) is the Beppo–Levi space
of distributions whose derivatives of order 2 are square integrable overR2 (see[9]). The
interpolating points arexi = (x1,i, x2,i ) ∈ R2 andui = (u1,i, u2,i ) ∈ R2 are the data
vectors. The coefficient� is a real positive parameter controlling the relative weight on the
gradient of the divergence and the rotational fields in two-dimensional space. It is shown in
[2,3] that problem (1.1) admits a unique solution.
In this work, we present a formulation for a three-dimensional vector spline approxima-

tion based on thin plate splines under tension, as introduced by Bouhamidi and Le Méhauté
[5,6]. The main idea here is to introduce a vector spline depending on a tension parameter,
which may be selected to avoid some extraneous inflections and oscillations.
The spaceV(R2; R2) given in problem (1.1) is modified and here is the space

Vm(R3; R3) = Xm(R3) × Xm(R3) × Xm(R3),

whereXm(R3) is the space of distributions whose derivatives of orderm andm + 1 are
square integrable over the three-dimensional spaceR3 [5,6].

We recall the following classical notations: letD(R3) denote the space of compactly
supported and infinitely differentiable functions onR3 andD′(R3) the space of distributions
onR3. LetC(R3) be the space of continuous functions onR3 andC′(R3) its topological dual,
the space of compactly supported Radon measures onR3. For an integerm > 0, we denote
by Pm−1(R

3) the space of all polynomials defined overR3 of total degree at most equal
tom − 1. As usual,L2(R3) denotes the classical space of measurable functions which are
square integrable onR3. The corresponding vectorial spaces are, respectively, denoted by

D(R3; R3) = D(R3) × D(R3) × D(R3),

D′(R3; R3) = D′(R3) × D′(R3) × D′(R3),

C(R3; R3) = C(R3)× C(R3)× C(R3), C′(R3; R3) = C′(R3)× C′(R3)× C′(R3),

Pm−1(R
3; R3) = Pm−1(R

3) × Pm−1(R
3) × Pm−1(R

3).

If T is a distribution inD′(R3) and� is a test function, the action ofT on � is de-
noted by〈T ,�〉 and if T = (T1, T2, T3) is a vectorial distribution inD′(R3; R3) and
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� = (�1,�2,�3) is a vectorial test function, the action ofT on� is also denoted by〈T ,�〉
and we have〈T ,�〉 =

∑3

i=1
〈Ti,�i〉. If T and� are such that the convolution products

�i ∗ Ti have a sense fori = 1,2, 3, then we denote by� ∗ T the vectorial convolution
product�∗T = (�1∗T1,�2∗T2,�3∗T3). For a matrix-valued functionF = (Fi,j ) 1� i �3

1� j �3

such thatFi,j ∗Tj have a sense fori, j = 1,2, 3, the convolution productF ∗T is the vector

function given byF ∗ T = (G1,G2,G3) whereGi =
∑3

j=1
Fi,j ∗ Tj for i = 1,2, 3.

The notation�i denotes the partial derivative
�

�xi
for i = 1,2, 3 and the notationsD� or ��

denote the partial derivative of order�. The gradient of a scalar distributionT is the vectorial
distribution∇T = (�1T , �2T , �3T ). The divergence, the rotational and the Laplacian of a
vectorial distributionT = (T1, T2, T3) are given bydivT = �1T1 + �2T2 + �3T3, rot T =
(�2T3 − �3T2, �3T1 − �1T3, �1T2 − �2T1) and�T = (�T1,�T2,�T3), respectively. We
denote by(rot T )i for i = 1,2, 3 theith component ofrot T . We also recall the formulas
rot(rot T ) = ∇(divT ) − �T , rot(∇T ) = 0 anddiv(rotT ) = 0.

The letterC refers to an arbitrary constant, and it may have different values in different
contexts.
Theoutlineof thispaper is as follows: inSection2,we recall some fundamental results and

propositions involving the scalar functional spaceXm(R3) and we give some propositions
related to the vectorial functional spaceVm(R3; R3). In Section 3, we present the vectorial
approximation problem related to thin plate splines under tension andweprove the existence
anduniqueness of the solution. The solution is explicitly givenwith someof its properties. In
Section 4, we study four particular vectorial spline problems. The first and second problems
are the limit problems when the parameter, controlling the divergence and the rotational
components of the vector field, goes to zero or infinity, respectively. The third and fourth
problems are the divergence-free problem and the rotation-free problem, respectively. In
each case, we prove the existence and uniqueness of the solution and we give an explicit
representation of the solution togetherwith someof its properties.We study the convergence
to the limit problems. In Section 5, we study the convergence in the classical vectorial
Sobolev space, on a bounded open set� of R3.

2. Functional spaces

2.1. Scalar functional space

We recall some notations and properties given in [5,6]. Letm�2 be a given integer. We
consider the space

Xm(R3) =
{
f ∈ D′(R3) : ∀� ∈ N3, |�| = m,m + 1, D�f ∈ L2(R3)

}
. (2.1)

Let� be a positive real parameter, called the parameter of tension. Letxbe a generic element
of R3 and letdx denote Lebesgue’s measure onR3. In the spaceXm(R3), we consider
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the semi-scalar product

(f |g)Xm =
∑

|�|=m+1

(m + 1)!
�!

∫
R3

D�f (x)D�g(x) dx

+�2
∑

|�|=m

m!
�!
∫

R3
D�f (x)D�g(x) dx. (2.2)

The associated semi-norm of (2.2) is denoted by| . |Xm . The spaceXm(R3) endowed with
the semi-inner product( .|. )Xm is a semi-Hilbert space with the null subspacePm−1(R

3).
We note that the elements ofXm(R3) are tempered distributions.
For any elementf of Xm(R3) and for any function� of D(R3), we have the following

equalities:

(f |�)Xm = 〈�m,�f,�〉 = 〈f,�m,��〉,
where the operator�m,� is defined by

�m,� = (−1)m+1�m
[
� − �2I

]
. (2.3)

The operator�m is themth iterate of the usual Laplace operator andI stands for the identity
operator. A fundamental solution of the differential operator�m,� is a tempered distribution
Em onR3 satisfying the relation

�m,�Em = (−1)m+1(�m+1 − �2�m)Em = �, (2.4)

where� is the Dirac measure at the origin. An expression of a fundamental solution of the
differential operator�m,� is given in[6] by

Em(x) = (−1)m

4��2m||x||
(
e−�||x|| −

2m−2∑
k=0

(−�||x||)k
k!

)
, (2.5)

where||x|| is the Euclidean norm of the vectorx of R3.
The Fourier transform̂Em of the fundamental solutionEm of the operator�m,� satisfies

the relation

Êm(�) = 1

(||2��||2 + �2)

[
C1Fp

( 1

||2��||2m
)

+
∑

|�|�2m−1

C�D
��
]
, (2.6)

whereC1 andC� are given constants andFp is the symbol of the finite part.
Let 	 be a compactly supported measure. We say that	 is orthogonal toPm−1(R

3) if

〈	, p〉 =
∫

R3
p(x)d	(x) = 0 for all p ∈ Pm−1(R

3).

Proposition 2.1. For all compactly supported measures	 orthogonal to the space
Pm−1(R

3),wehave��
(Em+1∗	) ∈ Xm(R3) for allmulti-indices� such that2� |�|�m+1.

Proof. Wewill prove that the Fourier transform of��
(Em+1∗	) is square integrable onR3

for all multi-indices� such thatm+2� |�|�2m+2. The Fourier transform of��
(Em+1∗	)
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is the product of the distribution̂Em+1 with theC∞ function� �→ (2i��)�	̂(�). The product
of D
� by the function� �→ (2i��)�	̂(�) is zero for|
|� |�| + m − 1 which is satisfied
for |
|�2m + 1 and|�|�m + 2. From relation (2.6) we obtain that the Fourier transform
of ��

(Em+1 ∗ 	) is given by

F[��
(	 ∗ Em+1)] = C

(2i��)� 	̂(�)

(||2��||2 + �2)
Fp

( 1

||2��||2(m+1)

)
. (2.7)

As 	 is orthogonal toPm−1(R
3), then all the derivatives of order�m − 1 of the Fourier

transform̂	 of 	 disappears at the origin. Thus there is a positive constantC such that in
the neighborhood of the origin, we have|̂	(�)|�C||�||m. Then, in the neighborhoodN of
the origin, we have the estimation

∫
N

||(2i��)� 	̂(�)||2
||2��||4(m+1)(||2��||2 + �2)2

d��C

∫
N

||�||−2m+2|�|−4 d�. (2.8)

The last integral on the right-hand side of (2.8) is finite, because 2m − 2|�| + 4 < 3,
i.e., |�| > m + 1/2. The Fourier transform of��

(Em+1 ∗ 	) is in fact a function almost

everywhere equal to the measurable function� �−→ C1
(2i��)� 	̂(�)

(||2��||2 + �2)||2��||2(m+1)
and

the finite part symbolFp in (2.7) is useless.
The Fourier transform of a compactly supported measure is a bounded function; thus,

outside a neighborhood of the origin, we have

∫
R3\N

||(2i��)� 	̂(�)||2
||2��||4(m+1)(||2��||2 + �2)2

d��C

∫
R3\N

||�||2|�|−4m−8d�. (2.9)

Then, in the outside a neighborhood of the origin, the function defined by

� �−→ ||(2i��)� 	̂(�)||
||2��||2(m+1)(||2��||2 + �2)

is square integrable because 4m + 8− 2|�| > 3 i.e.,|�| < 2m + 5/2. �

Let d(m) = (
m+2
3 ) denote the dimension ofPm−1(R

3) and

A = {xi = (x1,i, x2,i , x3,i) ∈ R3, i = 1, . . . , N}

a given ordered set ofN > d(m) distinct points ofR3 which contains aPm−1(R
3)-

unisolvent subset ofd(m) points (for convenience, we assume this is the subset of the
first d(m) points). ThePm−1(R

3)-unisolvence condition is equivalent to the existence of a
basis(pj )1� j �d(m) of Pm−1(R

3) such that

pj (xi) = �ij , i, j = 1, . . . , d(m) (2.10)
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where�ij is the Kronecker symbol. Letr = min
1� i �=j �N

||xi − xj ||/2 and consider the

functions�i : R3 −→ R for i = 1, . . . , N defined by

�i (x) =
 exp(1)exp(− r2

r2 − ||x − xi ||2 ) if ||x − xi || < r,

0 otherwise.
(2.11)

The functions�1, . . . ,�N are inD(R3) and satisfy the following conditions:

�j (xi) = �ij , i, j = 1, . . . , N. (2.12)

Now we consider the bilinear form onXm(R3) defined by

〈u|v〉Xm = (u|v)Xm +
d(m)∑
i=1

u(xi)v(xi), (2.13)

with its associated quadratic form denoted|| . ||Xm .

Proposition 2.2. The space(Xm(R3), 〈 . | . 〉Xm) is a Hilbert space continuously embedded
in C(R3) andPm−1(R

3) + D(R3) is dense inXm(R3).

Proof. (see[6]). �

2.2. Vectorial functional space

Now we define the product spaceVm(R3; R3) as

Vm(R3; R3) = Xm(R3) × Xm(R3) × Xm(R3), (2.14)

possessing the scalar product

〈u|v〉Vm =
3∑

i=1

〈ui |vi〉Xm, (2.15)

whereu = (u1, u2, u3), v = (v1, v2, v3) ∈ Vm(R3; R3). The associated norm of (2.15) is
denoted by|| . ||Vm . The next proposition can be viewed as an immediate consequence of
Proposition 2.2.

Proposition 2.3. The space(Vm(R3; R3), 〈 . | . 〉Vm) is a Hilbert space,continuously em-
bedded inC(R3; R3) andPm−1(R

3; R3) + D(R3; R3) is dense inVm(R3; R3).
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Let � > be a positive parameter. We consider the bilinear (and quadratic) formsDm,�,
Rm,� andJm,�,� defined onVm(R3; R3), for all u andv ∈ Vm(R3; R3), as follows:

Dm,�(u, v) = (div u|div v)Xm−1, Dm,�(u) = Dm,�(u, u),

Rm,�(u, v) =
3∑

i=1

((rot u)i |(rot v)i)Xm−1, Rm,�(u) = Rm,�(u, u),

Jm,�,�(u, v) = �Dm,�(u, v) + Rm,�(u, v), Jm,�,�(u) = Jm,�,�(u, u),

(2.16)

where� and(. | .)Xm−1 are given in (2.2).

Proposition 2.4. For all u = (u1, u2, u3) andv = (v1, v2, v3) ∈ Vm(R3; R3), we have

the relationDm,�(u, v) + Rm,�(u, v) =
3∑

i=1

(ui |vi)Xm .

Proof. The terms
∫

R3
D�uk(�)D


vl(�) d� of Dm,� cancel each other out with the corre-

sponding terms
∫

R3
D�′

uk(�)D

′
vl(�) d� of Rm,� for �, �′, 
 and
′ such that� − �′ =


′ − 
 = ei − ej with l �= k, i �= j andei is theith unit vector of the canonical basis ofR3.
�

Let us consider the following spacesY�, Ym, YD, YR andY given by

Y� = L2(R3) ∀� : |�| = m,m − 1, Ym =
∏

|�|=m,m−1

Y�,

YD = Ym, YR = Ym × Ym × Ym, Y = YD × YR.

(2.17)

Thenf = (fD, fR) denotes an element ofY = YD × YR where

fD = (fD,�)|�|=m,m−1 ∈ YD,

fR = (fR1,�, fR2,� , fR3,�)|�|=m,m−1 ∈ YR.
(2.18)

The spacesYD, YR andY, respectively, possess the following scalar products:

〈fD|gD〉YD
=
∑

|�|=m

m!
�!
∫

R3
fD,�(x)gD,�(x)dx

+�2
∑

|�|=m−1

(m − 1)!
�!

∫
R3

fD,�(x)gD,�(x)dx, (2.19)

〈fR|gR〉YR
=

3∑
i=1

∑
|�|=m

m!
�!
∫

R3
fRi,�(x)gRi,�(x)dx

+ �2
∑

|�|=m−1

(m − 1)!
�!

∫
R3

fRi,�(x)gRi,�(x)dx

 , (2.20)
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and

〈f |g〉Y = �〈fD|gD〉YD
+ 〈fR|gR〉YR

. (2.21)

The associated norms are denoted|| . ||YD
, || . ||YR

and || . ||Y , respectively. We note that
the spacesYD, YR andY possessing the scalar products defined above are Hilbert spaces.
We consider the linear mappings

TD : Vm(R3; R3) → YD, TR : Vm(R3; R3) → YR, T : Vm(R3; R3) → Y (2.22)

defined by

TDu = (D�(divu))|�|=m,m−1,

TRu = (D�(rot u)1,D�(rot u)2,D�(rot u)3)|�|=m,m−1,

T u = (TDu, TRu).

(2.23)

We point out that we have, for allu, v ∈ Vm(R3; R3), the following relations

〈TDu|TDv〉YD
= Dm,�(u, v),

〈TRu|TRv〉YR
= Rm,�(u, v),

〈T u|T v〉Y = �Dm,�(u, v) + Rm,�(u, v) = Jm,�,�(u, v).

(2.24)

Finally, let a : Xm(R3) → RN andA : Vm(R3; R3) → R3N be operators such that,
∀f ∈ Xm(R3) and∀v = (v1, v2, v3) ∈ Vm(R3; R3)

af = (f (x1), . . . , f (xN)),

Av = (v1(x1), . . . , v1(xN), v2(x1), . . . , v2(xN), v3(x1), . . . , v3(xN)).
(2.25)

We state the following fundamental proposition, which gives some properties of the
operatorsA andT.

Proposition 2.5.(1) The operators A and T are continuous from
(Vm(R3; R3), || . ||Vm) to (R3N, || . ||R3N ) and to(Y, || . ||Y ), respectively.

(2) Ker(T ) = Pm−1(R
3; R3) and Ker(T ) ∩ Ker(A) = {0}.

(3) Ker(T ) + Ker(A) is a closed subspace of(Vm(R3; R3), || . ||Vm).
(4) For all Z ∈ R3N there exist�Z ∈ D(R3; R3) and�Z ∈ D(R3; R3), such that:

A�Z = Z, rot(�Z) = 0, A�Z = Z and div(�Z) = 0.

(5) A is surjective.
(6) T (Vm(R3; R3)) is a closed subspace of(Y, || . ||Y ).
(7) For every closed vector subspaceW of Vm(R3; R3), the vector subspaceT (W) is

closed in(Y, || . ||Y ).

Proof. (1) From Proposition2.4 and relation (2.24), we obviously obtain that||T u||Y �√
max(�, 1) ||u||Vm for all u ∈ Vm(R3; R3); this proves the continuity ofT. The continuity
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of A follows from the continuous embedding ofVm(R3; R3) in C(R3; R3) (see Proposi-
tion 2.3).
(2) Foru = (u1, u2, u3) ∈ Ker(T ) we have||T u||Y = 0. From (2.24) we obtain that

Dm,�(u, u) = Rm,�(u, u) = 0. And fromProposition 2.4we obtain that
∑3

i=1
|ui |2Xm = 0.

Thenui ∈ Pm−1(R
3) for i = 1,2, 3 namelyu ∈ Pm−1(R

3; R3).
Letu = (u1, u2, u3) ∈ Ker(T )∩Ker(A); thenubelongs toPm−1(R

3; R3) andui(xj ) =
0 for i = 1,2, 3 andj = 1, . . . , N. ThePm−1(R

3)-unisolvence of{x1, . . . , xd(m)} implies
thatui = 0 for i = 1,2, 3.

(3) Is a consequence of item 2.
(4) For all Z = (Zi)1� i�N with Zi = (zi,k)1�k�3 ∈ R3 for 1� i�N and x =

(t1, t2, t3), we define the functionsi and�i by i (x) =
∑3

k=1
zi,ktk and�i (x) =

i (x)�i (x), where the functions�i are given by (2.11). The functions�i (x) = (∇�i )(x)

for 1� i�N are inD(R3; R3) and satisfy�i (xj ) = �i,jZi androt(�i ) = rot(∇�i ) = 0

for i, j = 1, . . . , N. It follows that the function�Z(x) =
∑N

i=1
�i (x) is an element

of D(R3,R3) satisfyingA�Z = Z and rot(�Z) = 0. For allZ = (Zi)1� i�N with
Zi = (zi,k)1�k�3 ∈ R3 the functionswi(x) = (zi,2t3, zi,3t1, zi,1t2) satisfyrot(wi) = Zi .
Let�i (x) = �i (x)wi(x) for 1� i�N , where the functions�i are given by (2.11). The func-
tions�i (x) = rot(�i )(x) are inD(R3; R3). They satisfy�i (xj ) = �i,jZi anddiv(�i ) =
div(rot(�i )) = 0 for i, j = 1, . . . , N. Then, the function�Z(x) =

∑N

i=1
�i (x) is an

element ofD(R3; R3) satisfyingA�Z = Z anddiv(�Z) = 0.
(5) Is an immediate consequence of item 4 and the fact thatD(R3; R3) is a subspace of

Vm(R3; R3).
(6) Let(fk)beasequence inT (Vm(R3; R3))whichconverges in(Y, || . ||Y ) to anelement

f belonging toY. There exists a sequence(uk) inVm(R3; R3) such thatT uk = fk and(T uk)
is a Cauchy sequence in(Y, || . ||Y ). Relation (2.24) together with Propositions 2.4 and 2.2
show that there exists an elementu ∈ Vm(R3; R3) such that(T uk) converges toT u in
(Y, || . ||Y ). Thusf = T u andT (Vm(R3; R3)) is a closed subspace in(Y, || . ||Y ).

(7) The subspaceT (Vm(R3)) is closed inY andKer(T ) = Pm−1(R
3; R3) is a finite-

dimensional space. Then for every closed subspaceW of Vm(R3), the subspaceT (W) is
closed inY if and only ifW + Ker(T ) is closed (see [11]).

3. Vectorial approximation problem

First, we give the following.

Definition 3.1. For all Z ∈ R3N, � > 0, � > 0 andε�0 we define a vectorial tension
spline function (V T-spline) as a solution�ε,�,� of the following approximation problem:

Pε(Z) : min
v∈Im

ε (Z)

(
Jm,�,�(v) + ε||Av − Z||2

R3N

)
, (3.1)
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where

Im
ε (Z) =

{
A−1(Z) for ε = 0 (interpolating problem),
Vm(R3; R3) for ε > 0 (smoothing problem)

(3.2)

A−1(Z) = {v ∈ Vm(R3; R3) : Av = Z} and|| . ||R3N is the Euclidean norm inR3N.

If � = 1, Proposition2.4 shows that problem (3.1) splits into the following three separate
problems, fori = 1,2, 3:

min
f∈Imε (Zi)

(
|f |2Xm + ε||af − Zi ||2RN

)
, (3.3)

where

Imε (Zi) =
{
a−1(Zi) for ε = 0 (interpolating problem),
Xm(R3) for ε > 0 (smoothing problem)

andZ = (Z1, Z2, Z3) with Zi = (zi,1, . . . , zi,n) ∈ R3N for i = 1,2, 3. The solutions of
the three problems (3.3) are the spline under tension given in [5]. Hereafter, we suppose
that� �= 1; then problem (3.1) is coupled on the three components.
The following theorem gives the existence and uniqueness together with the characteri-

zation of theVT-spline.

Theorem 3.1. For all Z ∈ R3N, � > 0, � > 0 and ε�0, there is a uniqueV T -spline
solution of problem(3.1).The VT-spline is the unique element�ε,�,� of Vm(R3; R3) char-
acterized by the relation

〈T �ε,�,�|T u〉Y + ε〈A�ε,�,� − Z|Au〉R3N = 0 ∀u ∈ Im
ε (0), (3.4)

whereIm
ε (0) is given by(3.2).

Proof. The existence, uniqueness and characterization of the solution�ε,�,� of the problem
(3.1) are immediate consequences of Proposition 2.5 and the general spline theory (see
[4,11]). �

In order to give an explicit expression of the solution of problem (3.1), we introduce the
following differentialmatrix-operatorsPm,�,�(D)andQ�(D)givenby∀u = (u1, u2, u3) ∈
D′(R3; R3):

Pm,�,�(D) u = �m−1,�

[
−�u + (1− �)∇(div u)

]
,

Q�(D) u = −�u +
(
1− 1

�

)
∇(div u).

(3.5)

The differential operatorsPm,�,�(D) andQ�(D) are the differential matrix-operators with
components given by

P
(i,j)
m,�,�(D) = �m−1,�

[
−�i,j� + (1− �)�2i,j

]
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and

Q
(i,j)
� (D) = −�i,j� +

(
1− 1

�

)
�2i,j

for i, j = 1,2, 3. They satisfy the following relation:

Pm,�,�(D) .Q�(D) = Q�(D) . Pm,�,�(D) = �m+1,�I3, (3.6)

whereI3 is the 3-unit matrix and�m+1,� is given by (2.3).

Proposition 3.1. For all u ∈ Vm(R3; R3) and� ∈ D(R3; R3) we have:

(1) Jm,�,�(u,�) = 〈Pm,�,�(D) u,�〉 = 〈u, andPm,�,�(D)�〉, and
(2) Pm,�,�(D) u = 0 if and only ifu ∈ Pm−1(R

3; R3).

Proof. (1) From (3.5), we can obviously verify that, foru = (u1, u2, u3) ∈ Vm(R3; R3)

and� = (�1,�2,�3) ∈ D(R3; R3), we have

Dm,�(u,�) = −
3∑

i,j=1

〈�m−1,�(�
2
ij )uj ,�i〉 = −〈�m−1,�[∇(div u)],�〉

= −
3∑

i,j=1

〈ui,�m−1,�(�
2
ij )�j 〉 = −〈u,�m−1,�[∇(div �)]〉

(3.7)

and

Rm,�(u,�) =
3∑

i,j=1

〈�m−1,�(−�ij� + �2ij )uj ,�i〉 = 〈�m−1,�[rot(rot u)],�〉

=
3∑

i,j=1

〈ui,�m−1,�(−�ij� + �2ij )�j 〉 = 〈u,�m−1,�[rot(rot�)]〉.
(3.8)

The goal is now achieved by taking into account the formularot(rot u) = ∇(div u) − �u.
(2) It is clear thatPm,�,�(D) u = 0 for u ∈ Pm−1(R

3; R3). Conversely, letu ∈
Vm(R3; R3) such thatPm,�,�(D) u = 0. Then〈Pm,�,�(D).u,�〉 = 0 for all� ∈ D(R3; R3)

and from item (1) we obtain�Dm,�(u,�)+Rm,�(u,�) = 0. So for allv ∈ Pm−1(R
3; R3)+

D(R3; R3) we also have�Dm,�(u, v) + Rm,�(u, v) = 0. The density ofPm−1(R
3; R3) +

D(R3; R3) in Vm(R3; R3) implies that for allv ∈ Vm(R3; R3) we have�Dm,�(u, v) +
Rm,�(u, v) = 0. In particular, forv = u and with relation (2.24), we obtain thatu ∈
Ker(T ) = Pm−1(R

3; R3). �

Let 	 = (	1, 	2, 	3) be a vectorial compactly supported measure. Then we say that	 is
orthogonal toPm−1(R

3; R3) if for all p = (p1, p2, p3) ∈ Pm−1(R
3; R3), we have

〈	, p〉 =
3∑

i=1

〈	i , pi〉 =
3∑

i=1

∫
R3

pi(x)d	i (x) = 0.
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The next proposition gives some characterizations of theVT-spline.

Proposition 3.2. Let �ε,�,� be theV T -spline solution of problem(3.1); then there are
unique coefficients�ε,�,�i,j with i = 1,2, 3 andj = 1, . . . , N such that

	ε,�,� =
 N∑

j=1

�ε,�,�1,j �xj ,
N∑
j=1

�ε,�,�2,j �xj ,
N∑
j=1

�ε,�,�3,j �xj

 (3.9)

is a vectorial-measure orthogonal to the spacePm−1(R
3; R3) and

Pm,�,�(D) �ε,�,� = 	ε,�,�, (3.10)

where�xj denotes Dirac’s measure at the pointxj .

Proof. Forε > 0 (the smoothing problem case), we haveIm
ε (0) = Vm(R3; R3). By taking

u = � = (�1,�2,�3) ∈ D(R3; R3) in relation (3.4) we obtain

〈T �ε,�,�|T�〉Y = −ε〈A�ε,�,� − Z|A�〉R3N ∀� ∈ D(R3; R3).

From relation (2.24), we obtain

〈T �ε,�,�|T�〉Y = �Dm,�(�
ε,�,�,�) + Rm,�(�

ε,�,�,�) ∀� ∈ D(R3; R3).

According to Proposition3.1, we obtain

〈Pm,�,�(D) �ε,�,�,�〉 = −ε〈A�ε,�,� − Z|A�〉R3N ∀� ∈ D(R3; R3),

namely for all� ∈ D(R3; R3) we have

〈Pm,�,�(D) �ε,�,�,�〉 =
3∑

i=1

N∑
j=1

ε
(
zi,j − �ε,�,�i (xj )

)
�i (xj ) =

3∑
i=1

N∑
j=1

�ε,�,�i,j �i (xj ),

where�ε,�,�i,j = ε
(
zi,j−�ε,�,�i (xj )

)
for i = 1,2, 3,j = 1, . . . , N and�ε,�,� = (�ε,�,�1 , �ε,�,�2 ,

�ε,�,�3 ). The last relation may be written in the following form:

〈Pm,�,�(D) �ε,�,�,�〉 =
3∑

i=1

〈
N∑
j=1

�ε,�,�i,j �xj ,�i

〉
∀� ∈ D(R3; R3). (3.11)

Now for ε = 0 (the interpolating problem case), we haveIm
0 (0) = A−1(0) = Ker(A).

Let v = (v1, v2, v3) be any element ofVm(R3; R3), and consider the elementu =
(u1, u2, u3) = v − � ∈ Vm(R3; R3) where� = (�1,�2,�3) ∈ D(R3; R3) is given

by�i =
∑N

j=1
vi(xj )�j for i = 1,2, 3 and the functions�1, . . . ,�N are given by (2.11).

It can obviously be verified thatu belongs toKer(A). From relation (3.4), we obtain that
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〈T �0,�,�|T u〉Y = 0. By virtue of relation (2.24) together with Proposition 3.1, we obtain

〈T �0,�,�|T v〉Y = 〈T �0,�,�|T�〉Y
= 〈Pm,�,�(D).�0,�,�,�〉 =

3∑
i=1

〈(Pm,�,�(D).�0,�,�)i ,�i〉.

Now according to the representation of the components of�, we obtain that

〈T �0,�,�|T v〉Y =
3∑

i=1

N∑
j=1

〈(Pm,�,�(D).�0,�,�)i ,�j 〉vi(xj ),

which may be written in the following form:

〈T �0,�,�|T v〉Y =
3∑

i=1

N∑
j=1

�0,�,�i,j vi(xj ) ∀v ∈ Vm(R3; R3), (3.12)

where�0,�,�i,j = 〈(Pm,�,�(D) �0,�,�)i ,�j 〉 for i = 1,2, 3 andj = 1, . . . , N. In particular,

for all � = (�1,�2,�3) ∈ D(R3; R3), we also have

〈T �0,�,�|T�〉Y =
3∑

i=1

N∑
j=1

�0i,j�i (xj ) =
3∑

i=1

〈
N∑
j=1

�0,�,�i,j �xj ,�i

〉
. (3.13)

Again, by using relation (2.24) and Proposition 3.1, we obtain that

〈Pm,�,�(D) �0,�,�,�〉 =
3∑

i=1

〈
N∑
j=1

�0,�,�i,j �xj ,�i

〉
∀� ∈ D(R3; R3). (3.14)

Relations (3.11) and (3.14) prove the required result (3.10).
Let p = (p1, p2, p3) ∈ Pm−1(R

3; R3); for ε > 0, by relation (3.4), we obtain

3∑
i=1

N∑
j=1

�ε,�,�i,j pi(xj ) = −ε〈A�ε,�,� − Z|Ap〉R3N = 〈T �ε,�,�|Tp〉Y = 0.

Forε = 0, byusing relation (3.12),weobtain
∑3

i=1

∑N

j=1
�0,�,�i,j pi(xj ) = 〈T �0,�,�|Tp〉Y

= 0, which proves the orthogonality condition

〈	ε,�,�, p〉 =
3∑

i=1

N∑
j=1

�ε,�,�i,j 〈�xj , p〉

=
3∑

i=1

N∑
j=1

�ε,�,�i,j p(xj ) = 0 ∀p ∈ Pm−1(R
3; R3). �
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Let Fm,�,� be a 3× 3 matrix valued function given by

Fm,�,� = Q�(D)Em+1 = (Q
(i,j)
� Em+1) 1� i �3

j � j �3

=
(

−�i,j�Em+1 +
(
1− 1

�

)
�2i,jEm+1

)
1� i �3
j � j �3

,
(3.15)

whereEm+1 is the fundamental solution of the operator�m+1,� given by relation (2.3). We
have

Pm,�,�(D) . Fm,�,� = (Pm,�,�(D) .Q�(D))Em+1
= (�m+1,�I3)Em+1 = (�m+1,�Em+1)I3 = �I3.

(3.16)

Relation (3.16) means that the matrix-valued functionFm,�,� is a fundamental solution of
the differential matrix-operatorPm,�,�(D).
We have the following.

Proposition 3.3. For all vectorial compactly supportedmeasures	 = (	1, 	2, 	3) orthog-
onal to the spacePm−1(R

3; R3), the convolution productFm,�,�∗	 belongs toVm(R3; R3).

Proof. It is an immediate consequence of Proposition2.1. �

The following theorem gives the expression of the solution of problem (3.1).

Theorem 3.2. Let �ε,�,� be the VT-spline solution of problem(3.1).Then there exists a
polynomial q inPm−1(R

3; R3) such that

�ε,�,� = Fm,�,� ∗ 	ε,�,� + q, (3.17)

where	ε,�,� is the vector-measure given by(3.9)andFm,�,� is the matrix-function given
by (3.15).Namely,the VT-spline�ε,�,� = (�ε,�,�1 , �ε,�,�2 , �ε,�,�3 ) is explicitly given by

�ε,�,�k (x)=
3∑

i=1

N∑
j=1

�ε,�,�i,j

[
�i,k�Em+1(x − xj ) +

(
1

�
− 1

)
�2i,kEm+1(x − xj )

]

+
d(m)∑
j=1

�ε,�,�k,j qj (x)

for k = 1,2, 3, where(q1, . . . , qd(m)) is a basis of the spacePm−1(R). The coefficients
�ε,�,�k,i and �ε,�,�k,j for k = 1,2, 3, i = 1, . . . , N and j = 1, . . . , d(m) are computed by
solving the3(N + d(m)) × 3(N + d(m)) nonsingular linear system

(
K + cεI3N M

MT O

)(
�ε,�,�

�ε,�,�

)
=
(
Z

O

)
with cε =

{ 1

ε
if ε > 0,

0 if ε = 0,
(3.18)



212 M.N. Benbourhim, A. Bouhamidi / Journal of Approximation Theory 136 (2005) 198–229

where�ε,�,� and�ε,�,� are the vectors given by

�ε,�,� = (�ε,�,�1,1 , . . . , �ε,�,�1,N , �ε,�,�2,1 , . . . , �ε,�,�2,N , �ε,�,�3,1 , . . . , �ε,�,�3,N )T ∈ R3N,

�ε,�,� = (�ε,�,�1,1 , . . . , �ε,�,�1,d(m), �
ε,�,�
2,1 , . . . , �ε,�,�2,d(m), �

ε,�,�
3,1 , . . . , �ε,�,�3,d(m))

T ∈ R3d(m),

andI3N,K = (Kl,k)1� l,k�3 andM = (Ml,k)1� l,k�3 are the3N-unit matrix, 3N × 3N
and3N × 3d(m)matrices,respectively. The blocksKl,k andMl,k of K and M are given by

Kl,k =
(

�l,k�Em+1(xi − xj ) +
(
1

�
− 1

)
�2l,kEm+1(xi − xj )

)
1� i,j �N

,

Ml,k = �l,k
(
qj (xi)

)
1� i�N
1� j � d(m)

,

respectively.

Proof. From Proposition3.2,Pm,�,�(D).�ε,�,� is a vectorial compactly supported measure
	ε,�,� orthogonal toPm−1(R

3; R3). From Proposition 3.3, the convolution productFm,�,� ∗
	ε,�,� belongs toVm(R3; R3) and we have

Pm,�,�(D)(Fm,�,� ∗ 	ε,�,�) = Pm,�,�(D)(Fm,�,�) ∗ 	ε,�,�

= �I3 ∗ 	ε,�,� = 	ε,�,� = Pm,�,�(D)(�ε,�,�),

which gives

Pm,�,�(D)(�ε,�,� − Fm,�,� ∗ 	ε,�,�) = 0.

According toProposition3.1,weobtain that�ε,�,�−Fm,�,�∗	ε,�,� belongs toPm−1(R
3; R3).

This gives representation (3.17) of�ε,�,� and with respect to the interpolating (and smooth-
ing) conditions together with the orthogonality conditions, we obtain the linear system
(3.18). �

4. Particular approximation problems

In this section we study four particular vectorial approximation problems. The first and
second problems are the limit problems (as will be shown) when� → 0 and� → +∞,
respectively. The third and fourth are the divergence-free problem and the rotation-free
problem, respectively. Problems similar to the third and fourth problems were studied by
Dodu [8] andHandscomb [10]. In order to study the four cases simultaneously, we introduce
a subscript2 which is, in the context of this section, equal to 1,2, 3 or 4. We define the
following vector subspaces ofVm(R3; R3) by

Vm
1 (R

3; R3) = {v ∈ Vm(R3; R3), Rm,�(v) = 0},
Vm
2 (R

3; R3) = {v ∈ Vm(R3; R3),Dm,�(v) = 0},
Vm
3 (R

3; R3) = {v ∈ Vm(R3; R3), rot v = 0},
Vm
4 (R

3; R3) = {v ∈ Vm(R3; R3), div v = 0},
(4.1)
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and we consider the quadratic formJ (2)
m,�(v) = J

(2)
m,�(v, v) where

J (2+2)
m,� (u, v) = J (2)

m,�(u, v) = �1,2Dm,�(u, v) + �2,2Rm,�(u, v) for 2 = 1,2.

Since the linear operatorsrot, div and the quadratic formJ (2)
m,� are continuous, thenVm

2

(R3; R3)are closedsubspacesofVm(R3; R3)andVm
2 (R

3; R3)possessing the scalar product
induced by the scalar product〈 .|. 〉Vm given by (2.15) are Hilbert spaces for2 = 1,2, 3
and 4.
It can obviously be verified thatVm(R3; R3) = Vm

3 (R
3; R3)+Vm

4 (R
3; R3), which leads

to the fact that each fieldv ∈ Vm(R3; R3) may be decomposed into the sum

v = ∇� + rot�, (4.2)

with a rotation-free part∇� (we haverot∇� = 0) and a divergence-free partrot� (we have
div(rot�) = 0). In fluid mechanics, Eq. (4.2) is known as the Helmholtz decomposition.
The function� is called the velocity potential and� is called the stream function.

4.1. Limit problems, divergence-free problem and rotation-free problem

Definition 4.1. For allZ ∈ R3N, � > 0, ε�0 and2 = 1,2, 3,4, we define the particular
vectorial tension spline�ε,�2 as a solution of the following approximation problem:

P(2)
ε (Z) : min

v∈Im
ε,2(Z)

(J (2)
m,�(v) + ε ‖ Av − Z ‖2

R3N ), (4.3)

where

Im
ε,2(Z) =

{
A−1(Z) ∩ Vm

2 (R
3; R3) for ε = 0 (interpolating problem),

Vm
2 (R

3; R3) for ε > 0 (smoothing problem).
(4.4)

Let us first remark that problem (4.3) is equivalent to the problem

min
Im
ε,2(Z)

(Dm,�(v) + Rm,�(v) + ε ‖ Av − Z ‖2
R3N ). (4.5)

LetY2 be the spaceY2 = YD if 2 = 1,3 or Y2 = YR if 2 = 2, 4, whereYR andYD are
given by (2.17). LetT2 : Vm

2 (R
3; R3) → Y2 be the restriction to(Vm

2 (R
3; R3), 〈 .|. 〉Vm)

of the linear operatorTD if 2 = 1,3 or of TR if 2 = 2, 4, whereTD andTR are given by
(2.22)–(2.23) and letA2 : Vm

2 (R
3; R3) → R3N be the restriction to(Vm

2 (R
3; R3), 〈 .|. 〉Vm)

of the operatorA. We recall the following relation given in (2.24):

〈T2u|T2v〉Y2
= J (2)

m,�(u, v), ∀u, v ∈ Vm
2 (R

3; R3).

Let us denote byPm−1,2(R
3; R3) for 2 = 1,2, 3,4, the following polynomial subspaces

of Vm
2 (R

3; R3) given by

Pm−1,2(R
3; R3) = Pm−1(R

3; R3) ∩ Vm
2 (R

3; R3). (4.6)
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Proposition 4.1.We have

Pm−1,2(R
3; R3) = Pm−1(R

3; R3) for 2 = 1,2,
Pm−1,3(R

3; R3) = {p ∈ Pm−1(R
3; R3)|rotp = 0}

= {p ∈ Pm−1(R
3; R3)|∃q ∈ Pm(R

3) : p = ∇q},
Pm−1,4(R

3; R3) = {p ∈ Pm−1(R
3; R3)|div p = 0}

= {p ∈ Pm−1(R
3; R3)|∃q ∈ Pm(R

3; R3) : p = rot q}.

The dimensiond2(m) of the spacePm−1,2(R
3; R3) is given by

d2(m) =


3d(m) = m(m + 1)(m+ 2)

2
if 2 = 1,2,

(m + 1)(m+ 2)(m + 3)

6
− 1 if 2 = 3,

m(m + 1)(2m + 7)

6
if 2 = 4.

Proof. See[10,8]. �

We state the existence, uniqueness and characterization of the solution of problem (4.3).

Proposition 4.2. For all Z ∈ R3N, � > 0, ε�0 and 2 = 1,2, 3,4, problem(4.3) has
a unique solution. The solution of problem(4.3) is a unique element�ε,�2 of Vm

2 (R
3; R3)

characterized by the relation

〈T2�ε,�2 |T2u〉Y2
+ ε〈A2�

ε,�
2 − Z|A2u〉R3N = 0, ∀u ∈ Im

ε,2(0), (4.7)

whereIm
ε,2(0) is given by(4.4).

Proof. From Proposition 2.5, the operatorsT2 andA2 are continuous fromVm
2 (R

3; R3) to
Y2 and toR3N, respectively. They satisfy the following:

(1) A2 is surjective (Proposition2.5, item 4),
(2) T2(Vm

2 (R
3; R3)) is closed inY2 (Proposition2.5, item 7),

(3) Ker T2 = Pm−1,2(R
3; R3) andKerA2 + KerT2 is closed inVm

2 (R
3; R3),

(4) KerA2 ∩ KerT2 = {0}.
Then the required result is, as for Theorem3.1, a consequence of spline theory.�

In order to give an explicit expression of the solution of problem (4.3), we introduce the
following differential operatorP (2)

m,�(D) given by

P (2)
m,�(D) u =

{−�m,�(div u) for 2 = 1,3,
�m,�(rot u) for 2 = 2, 4.

(4.8)
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Proposition 4.3. For all u ∈ Vm
2 (R

3; R3), for all � ∈ D(R3) if 2 = 1,3 and for all
� ∈ D(R3; R3) if 2 = 2, 4,we have

(1) 〈P (2)
m,�(D) u,�〉 =

{
J
(2)
m,�(u,∇�) for 2 = 1,3,

J
(2)
m,�(u, rot�) for 2 = 2, 4.

(2) P
(2)
m,�(D) u = 0 if and only ifu ∈ Pm−1,2(R

3; R3).

Proof. (1) For2 = 1,3. From (3.7), foru = (u1, u2, u3) ∈ Vm(R3; R3) and� ∈ D(R3),
we have

J
(2)
m,�(u,∇�) = Dm,�(u,∇�) = −〈�m−1,�[∇(div u)],∇�〉

= 〈�m−1,�[�(div u)],�〉
= −〈�m,�(div u),�〉.

For 2 = 2, 4, from (3.8), for u = (u1, u2, u3) ∈ Vm(R3; R3) and� = (�1,�2,�3) ∈
D(R3; R3), we have

J (2)
m,�(u, rot�) = Rm,�(u,∇�) = 〈�m−1,�[rot (rot u)], rot�〉.

Sincerot(rot u) = ∇(div u) − �u, we obtainJ (2)
m,�(u, rot�) = 〈�m,�(rot u),�〉.

(2) The result is obtained from Proposition3.1 item (2) by using relations (2.24).�

Proposition 4.4. Let�ε,�2 be thevectorial splinesolutionofproblem(4.3)with2 = 1,2, 3,4,
then there are unique coefficients�ε,�i,j,2 with i = 1,2, 3 andj = 1, . . . , N such that	ε,�2 = N∑

j=1

�ε,�1,j,2�xj ,
N∑
j=1

�ε,�2,j,2�xj ,
N∑
j=1

�ε,�3,j,2�xj

 is a vectorial measure orthogonal to the space
Pm−1,2(R

3; R3) and

P (2)
m,�(D) �ε,�2 =

{
div(	ε,�2 ) for 2 = 1,3,
rot(	ε,�2 ) for 2 = 2, 4.

(4.9)

Proof. It is similar to the proof of Proposition3.2 by using the characterization given by
relation (4.7). �

The following theorem gives a characterization and computing method of the vectorial
spline of the particular problems.

Proposition 4.5. The unique solution�ε,�2 = (�ε,�1,2, �
ε,�
2,2, �

ε,�
3,2) ∈ Vm

2 (R
3; R3) of problem

(4.5) is explicitly given by
for k = 1,2, 3,and2 = 1,3,

�ε,�k,2(x) =
3∑

i=1

N∑
j=1

�ε,�i,j,2�
2
i,kEm+1(x − xj ) +

d2(m)∑
j=1

�ε,�j,2qk,j,2(x),
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and fork = 1,2, 3,and2 = 2, 4,

�ε,�k,2(x) =
3∑

i=1

N∑
j=1

�ε,�i,j,2(−�i,k� + �2i,k)Em+1(x − xj ) +
d2(m)∑
j=1

�ε,�j,2qk,j,2(x),

where(q1,2, . . . , qd2(m),2) is a basis ofPm−1,2(R
3; R3) with qj,2 = (q1,j,2, q2,j,2, q3,j,2)

for j = 1, . . . , d2(m). The coefficients�ε,�i,j,2 and�ε,�k,2 for i = 1,2, 3, j = 1, . . . , N, k =
1, . . . , d2(m) and2 = 1,2, 3,4are computed by solving the(3N+d2(m))× (3N+d2(m))

linear system(
K(2) + cεI3N M(2)

M(2)T 0

)(
�ε,�
2

�ε,�2

)
=
(
Z

0

)
with cε =

{ 1

ε
if ε > 0,

0 if ε = 0,

where�ε,�
2 and�ε,�2 are the vectors given by

�ε,�
2 = (�ε,�1,1,2, . . . , �

ε,�
1,N,2, �

ε,�
2,1,2, . . . , �

ε,�
2,N,2, �

ε,�
3,1,2, . . . , �

ε,�
3,N,2)

T ∈ R3N,

�ε,�2 = (�ε,�1,2, . . . , �
ε,�
d2(m),2)

T ∈ Rd2(m)

and I3N is the3N-unit matrix,K(2) = (K
(2)
k,p)1�k,p�3 is the3N × 3N matrix given by

blocks

K
(2)
k,p =


(
�2k,pEm+1(xi − xj )

)
1� i,j �N

for 2 = 1,3,(
(−�k,p� + �k,p)Em+1(xi − xj )

)
1� i,j �N

for 2 = 2, 4

andM(2) = (M
(2)
1 M

(2)
2 M

(2)
3 )T is the3N × d2(m) matrix given by blocks

M
(2)
k = (qk,j,2(xi))1� i�N

1� j � d2(m)

for k = 1,2, 3.

Proof. Let 2 = 1 or 3. Let v= (v1, v2, v3) := ∇ Em+1 ∗ div(	ε,�2 ), whereEm+1 is the
fundamental solution given by (2.5) of the operator�m+1,� and

vp(x) =
3∑

i=1

N∑
j=1

�ε,�i,j,2�
2
i,pEm+1(x − xj ) for p = 1,2, 3.

Since the measure	ε,�2 is orthogonal toPm−1,2(R
3; R3) and rot v = 0, it follows from

Proposition2.1, that the elementvbelongs toVm
2 (R

3; R3). It can obviously be verified that

P
(2)
m,�(D) v = div 	ε,�2 = P

(2)
m,�(D) �ε,�2 . This implies thatP (2)

m,�(D) [�ε,�2 −v] = 0. According
to Proposition 4.3, we obtain that�ε,�2 − v belongs toPm−1,2(R

3; R3).
Let 2 = 2 or 4 and letw = (w1, w2, w3) := rot[rot((I3Em+1) ∗	ε,�2 )]. From the relation

rot(rot u) = ∇(div u) − �u, we have

wp(x) =
3∑

i=1

N∑
j=1

�ε,�i,j,2(−�i,p� + �2i,p)Em+1(x − xj ), for p = 1,2, 3.
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Since the measure	ε,�2 is orthogonal toPm−1,2(R
3; R3) anddiv w = 0, it follows from

Proposition2.1 that the elementw belongs toVm
2 (R

3; R3). It can obviously be verified

thatP (2)
m,�(D)w = rot 	ε,�2 = P

(2)
m,�(D) �ε,�2 . This implies thatP (2)

m,�(D) [�ε,�2 − w] = 0.
According to Proposition 4.3, we obtain that�ε,�2 − w belongs toPm−1,2(R

3; R3).
The linear system is deduced in the same way as for Theorem 3.2.�

4.2. Example: rotation-free approximation

In this subsectionwegiveanexplicit example for the rotation-freeapproximationproblem
which corresponds to the case2 = 3 in Proposition 4.4. Let us setm = 2 and letZ =
(Z1, Z2, Z3) be a given vector inR3N whereZi = (zi,1, . . . , zi,N ) ∈ RN for i = 1,2, 3.
We consider

A = {xi = (x1,i, x2,i , x3,i) ∈ R3, i = 1, . . . , N}
an ordered set ofN distinct points ofR3 with N > d(2) = 4. We suppose that the setA
contains aP1(R

3)-unisolvent subset of 4 points. TheP1(R
3)-unisolvence ofA means that

A contains at least 4 points which are not located in the same plane ofR3. The case of the
rotation-free approximation in problem (4.3) can be written as

P(3)
ε (Z) : min

v=(v1,v2,v3)∈I2
ε,3(Z)

(J
(3)
2,� (v) + ε

3∑
i=1

N∑
j=1

|vi(xi,j ) − zi,j |2),

where

I2
0,3(Z)= {v = (v1, v2, v3) ∈ V2

3(R
3; R3) : vi(xi,j ) = zi,j , i = 1,2, 3;

j = 1, . . . , N}
for the interpolating problem (ε= 0) and

I2
ε,3(Z) = V2

3(R
3; R3) := {v ∈ V2(R3; R3) : rot v = 0}

for the smoothing problem (ε >0). The quadratic formJ (3)
2,� is given by

J
(3)
2,� (v) =

∑
|�|=2

2!
�!
∫

R3
|D�(div v)(x)|2dx + �2

∑
|�|=1

∫
R3

|D�(div v)(x)|2dx.

Let us introduce the polynomials qk,3 for k = 1, . . . ,9 of the spaceP1(R
3; R3) given by

q1,3(x) = (1,0, 0), q2,3(x) = (0, 1,0), q3,3(x) = (0, 0, 1),
q4,3(x) = (x1, 0, 0), q5,3(x) = (0, x2, 0), q6,3(x) = (0, 0, x3),
q7,3(x) = (0, x3, x2), q8,3(x) = (x3, 0, x1), q9,3(x) = (x2, x1, 0),

for x = (x1, x2, x3) ∈ R3. The family(q1,3, . . . , q9,3) is a basis of the space

P1,3(R
3; R3) = {p ∈ P1(R

3; R3) : rotp = 0}
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given in Proposition4.1. The solution�ε,�3 = (�ε,�1,3, �
ε,�
2,3, �

ε,�
3,3) ∈ V2

3(R
3; R3) of the

problemP(3)
ε (Z) is given by Proposition 4.5 as follows:

�ε,�3 (x) =
3∑

i=1

N∑
j=1

�ε,�i,j,3�i (∇ E3)(x − xj ) +
9∑

k=1

�ε,�k,3qk,3(x),

where

E3(x) = − 1

4��6||x||

(
e−�||x|| −

4∑
k=0

(−�||x||)k
k!

)

is a fundamental solution of the operator�3,�. The coefficients�
ε,�
i,j,3 and�

ε,�
k,3 for i = 1,2, 3;

j = 1, . . . , N andk = 1, . . . ,9 are computed by solving the(3N + 9)× (3N + 9) linear
system

(
K(3) + cεI3N M(3)

M(3)T 0

)(
�ε,�
2

�ε,�3

)
=
(
Z

0

)
with cε =


1

ε
if ε > 0,

0 if ε = 0.

The vectors�ε,�
3 and�ε,�3 are given by�ε,�

3 = (�ε,�1,1,3, . . . , �
ε,�
1,N,3, �

ε,�
2,1,3, . . . , �

ε,�
2,N,3, �

ε,�
3,1,3,

. . . , �ε,�3,N,3)
T ∈ R3N and�ε,�3 = (�ε,�1,3, . . . , �

ε,�
9,3)

T ∈ R9. The matrixI3N is the 3N-unit

matrix andK(3) = (K
(3)
k,p)1�k,p�3 is the 3N× 3N block-matrix whose blocks are given

by

K
(3)
k,p =

(
�2k,pEm+1(xi − xj )

)
1� i,j �N

.

The matrixM(3) =
M

(3)
1

M
(3)
2

M
(3)
3

 is the 3N× 9 matrix given by

M
(3)
1 =


1 0 0 x1,1 0 0 0 x3,1 x2,1
1 0 0 x1,2 0 0 0 x3,2 x2,2
...

...
...

...
...

...
...

...
...

1 0 0 x1,N 0 0 0 x3,N x2,N

 ,

M
(3)
2 =


0 1 0 0 x2,1 0 x3,1 0 x1,1
0 1 0 0 x2,2 0 x3,2 0 x1,2
...

...
...

...
...

...
...

...
...

0 1 0 0 x2,N 0 x3,N 0 x1,N
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and

M
(3)
3 =


0 0 1 0 0 x3,1 x2,1 x1,1 0
0 0 1 0 0 x3,2 x2,2 x1,2 0
...

...
...

...
...

...
...

...
...

0 0 1 0 0 x3,N x2,N x1,N 0

 .

4.3. Limit problems and convergence

In this subsection we study the convergence of problem (3.1) for� → 0 and� → +∞.
We will show that problem (3.1) converges for� → 0 and� → +∞ to the limit problems
P(1)
ε (Z) andP(2)

ε (Z) given by (4.3), respectively. In order to deal with this, we state the
following general result.
Let J : E → R be a functional defined on a topological spaceE, we recall thatJ is

said to be lower semi-continuous (l.s.c) if and only if for all � ∈ R, the subsetS� = {x ∈
E, J (x)��} is closed inE.

Lemma 4.1. Let (E, || . ||E) be a reflexive Banach space,let J1 and J2 be two positive
convex andl.s.c functionals on(E, || . ||E), let C be a convex closed nonempty subset of
(E, || . ||E) and consider the following three minimum problems:

P�>0 : inf
v∈C(J1(v) + �J2(v)), P∞ : inf

v∈C1
J1(v) and P0 : inf

v∈C2
J2(v),

whereC1 = {v ∈ C | J2(v) = 0} andC2 = {v ∈ C | J1(v) = 0} are nonempty. We
suppose that

(1) Eachminimum problemP�>0,P∞ andP0 admits a unique solution denoted by��, �∞
and�0, respectively.

(2) The functionalJ = J1 + J2 is coercive,i.e., lim‖v‖E→+∞ J (v) = +∞.

Then

(a) lim
�→0

J1(��) = J1(�0) = 0, lim
�→0

J2(��) = J2(�0) and lim
�→0

�� = �0 weakly.

(b) lim
�→∞ J1(��) = J1(�∞) = 0, lim

�→∞ J2(��) = J2(�∞) and lim
�→∞ �� = �∞ weakly.

Proof. The proof is given for� → 0. We have

J1(��) + �J2(��)�J1(v) + �J2(v) ∀v ∈ C, (4.10)

by takingv = �0 in equality (4.10) we obtain

J1(��)��J2(�0) and J2(��)�J2(�0). (4.11)

Then lim�→0 J1(��) = 0 and consequently(J1(��) + J2(��))�>0 is a bounded real se-
quence. Since the sum functionalJ = J1+J2 is coercive, the sequence(��)�>0 is bounded
in the space(E, || . ||E). Thus there is a subsequence(��n)n∈N of (��)�>0, which weakly
converges to some limitv0 ∈ E.
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SinceC is a convex closed subset, it follows thatC is a weak closed set andv0 belongs to
C. The property ofl.s.c of J1 implies thatJ1(v0)� lim inf

n→+∞ J1(��n) = 0, and consequently

v0 belongs toC2. Also, the property ofl.s.c of J2 together with inequality (4.11) implies
thatJ2(v0)� lim inf

n→+∞ J2(��n)�J2(�0).

By uniqueness of the solution�0 of P0, we obtain thatv0 = �0. In the same manner,
we can show that every weakly convergent subsequence of(��)�>0 weakly converges
necessarily to�0 and consequently lim

�→0
�� = �0 weakly.

The problemP� is equivalent to the problem inf
v∈C(

1
�J1(v)+ J2(v)) and consequently the

proof for� → +∞ is similar to the one for� → 0. �

Remark 4.1. The existence of the solution�� of the problemP�>0 is guaranteed by the
fact that the functionalJ is coercive. In fact, in item (1) of Lemma4.1, we can only suppose
the uniqueness of the solution��.

Now we are ready to state the following theorem.

Theorem 4.1. The solution�ε,�,� of problem(3.1)satisfies

(1) lim
�→0

||�ε,�,� − �0,�1 ||Vm = 0 and (2) lim
�→∞ ||�ε,�,� − �ε,�2 ||Vm = 0,

where�ε,�2 is the solution of problem(4.3) for 2 = 1,2, respectively.

Proof. First, let us remark that, in the caseε = 0, the interpolating problem (3.1) is
equivalent to the problem

min
Im
0 (Z)

(�Dm,�(v) + Rm,�(v) + ||Av − Z||2
R3N ).

The proof of Theorem4.1 is given by using Lemma 4.1. Let

J1(v) =
{
Rm,�(v) + ε||Av − Z||2

R3N if ε > 0,

Rm,�(v) + ||Av − Z||2
R3N if ε = 0,

andJ2(v) = Dm,�(v). J1 andJ2 are two convex continuous functionals onVm(R3; R3).
We haveC = Im

ε (Z), C1 = Im
ε,1(Z) andC2 = Im

ε,2(Z). The minimum problemsP�>0,

P∞ andP0 have, respectively, a unique solution�� = �ε,�,�, �0 = �0,�1 and�∞ = �ε,�2 .
The functional defined onVm(R3; R3) by v → (Dm,�(v) + Rm,�(v) + ||Av||2

R3N )
1/2 is a

norm inVm(R3; R3) equivalent to the norm|| . ||Vm . Thus,Dm,�(v)+Rm,�(v)+||Av||2
R3N

converges to∞ as||v||Vm → ∞. Since

J1(v) + J2(v)� min(1, ε)
(
Dm,�(v) + Rm,�(v) + ||Av − Z||2

R3N

)
and

||Av − Z||R3N �
∣∣∣||Av||R3N − ||Z||R3N

∣∣∣,
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it follows that J (v) = J1(v) + J2(v) → ∞ as ||v||Vm → ∞, which proves that the
functionalJ is coercive. According to Lemma4.1, we obtain
(a) lim

�→0
J1(�

ε,�,�) = J1(�
0,�
1 ) = 0, lim

�→0
J2(�

ε,�,�) = J2(�
0,�
1 ),

(b) lim
�→∞ J1(�

ε,�,�) = J1(�
ε,�
2 ) = 0, lim

�→∞ J2(�
ε,�,�) = J2(�

ε,�
2 ),

(c) lim
�→0

�ε,�,� = �0,�1 and lim
�→∞ �ε,�,� = �ε,�2 weakly.

Property (a) implies that

lim
�→0

Rm,�(�
ε,�,�) = 0 = Rm,�(�

0,�
1 ), lim

�→0
Dm,�(�

ε,�,�) = Dm,�(�
0,�
1 ),

and lim�→0 A�ε,�,� = A�0,�1 , in R3N. It follows that

lim
�→0

(
Dm,�(�

ε,�,�) + Rm(�
ε,�,�) + ||A�ε,�,�||2

R3N

)
= Dm,�(�

0,�
1 ) + Rm,�(�

0,�
1 )+ ‖ A�0,�1 ‖2

R3N ,

and consequently, lim�→0 ||�ε,�,�||Vm = ||�0,�1 ||Vm . The weak convergence (property
(c)) together with the norm convergence implies the strong convergence lim�→0 ||�ε,�,� −
�0,�1 ||Vm = 0.
Fromproperty (c), we have theweak convergence lim�→+∞ �ε,�,� = �ε,�2 inVm(R3). So,

we obtain the weak and consequently the strong convergence lim�→+∞ A�ε,�,� = A�ε,�2
in R3N.
Property (b) implies that

lim
�→∞Dm,�(�

ε,�,�) = Dm,�(�
ε,�
2 ) and lim

�→∞Rm,�(�
ε,�,�) = Rm,�(�

ε,�
2 ).

It follows that

lim
�→∞

(
Dm,�(�

ε,�,�) + Rm(�
ε,�,�) + ||A�ε,�,�||2

R3N

)
= Dm,�(�

ε,�
2 ) + Rm,�(�

ε,�
2 )+ ‖ A�ε,�2 ‖2

R3N ,

which concludes the proof.�

5. Convergence in Sobolev space

In order to avoid boundary conditions, as in the case of the scalar thin plate spline
problem, variational problems (3.1) and (4.3)were set by consideringa semi-norm involving
integrals on thewhole spaceR3. This allowsaneffective construction of theapproximant. To
show that the vectorial spline with tension may also be used for approximation in Sobolev
space, on an open bounded set� of R3, we will study, in this section, the convergence
problem.
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Let� be a bounded open subset ofR3 and consider the classical Sobolev spaceHm+1(�)
of orderm + 1. InHm+1(�) we define the symmetric bilinear form

(f |g)m,�,� =
∑

|�|=m+1

(m + 1)!
�!

∫
�
D�f (x)D�g(x)dx

+�2
∑

|�|=m

m!
�!
∫

�
D�f (x)D�g(x)dx,

for f, g ∈ Hm+1(�). Consider the spaceHm+1(�; R3) := Hm+1(�) × Hm+1(�) ×
Hm+1(�). In Hm+1(�; R3) we define the following quadratics forms:

Rm,�(v) =
3∑

i=1

((rot v)i |(rot v)i)m−1,�,� and Dm,�(v) = (div v|div v)m−1,�,�,

for v ∈ Hm+1(�; R3). Let us denote byHm
2 (�; R3), for 2 = 0, 1,2, 3,4, the following

spaces:

Hm
0 (�; R3) = Hm+1(�; R3) = Hm+1(�) × Hm+1(�) × Hm+1(�),

Hm
1 (�; R3) = {v ∈ Hm

0 (�; R3)|Rm,�(v) = 0},
Hm

2 (�; R3) = {v ∈ Hm
0 (�; R3)|Dm,�(v) = 0},

Hm
3 (�; R3) = {v ∈ Hm

0 (�; R3)|rot v = 0},
Hm

4 (�; R3) = {v ∈ Hm
0 (�; R3)|div v = 0}.

(5.1)

We also denoteVm
0 (R

3; R3) = Vm(R3; R3). We recall that the spacesVm
2 (R

3; R3), for
2 = 1,2, 3,4, are given by (4.1).

Let �N = {xN1 , . . . , xNn(N)} be aPm−1-insolvent subset of�. We suppose thatn(N)�
d(m) and limN→+∞ n(N) = +∞. For any elementv ∈ V2(R

3; R3) ( or v ∈ H2(�; R3))
with 2 = 0, 1,2, 3,4 we denoteANv = (v(xNi ))1� i�n(N).

For anyv ∈ Vm
2 (R

3; R3)with 2 = 0, 1,2, 3,4 andε�0, we denote bySεN,2v the solution

of the problemP(2)
ε (ZN) given by (3.1) for2 = 0 and given by (4.3) for2 = 1,2, 3,4where

ZN = (v(xNi ))1� i�n(N). By using the general spline theory (see [4]), we can obviously
verify that

(1) SεN,2 is a projector :SεN,2S
ε
N,2 = SεN,2,

(2) SεN,2S
0
N,2 = S0N,2 andS

0
N,2S

ε
N,2 = SεN,2.

Let R� denote a restriction operator fromR3 to �. The linear mappingR� is contin-
uous fromVm

0 (R
3; R3) to Hm

0 (�; R3) (see[12]) and consequently it is continuous from
Vm
2 (R

3; R3) to Hm
2 (�; R3) for 2 = 1,2, 3,4. LetPm−1,0(R

3; R3) = Pm−1(R
3; R3) and

let Pm−1,2(�; R3) denote the spaceR�[Pm−1,2(R
3; R3)] for 2 = 0, 1,2, 3,4.

In the remainder of this section the subscript2 will be equal to 0, 1,2, 3 or 4.

Definition 5.1. Theboundedopen set�has theVm
2 (R

3; R3)-extension property if there ex-
ists a continuous linear applicationE2 fromHm

2 (�; R3) toVm
2 (R

3; R3) such thatR�E2u =
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u for any elementu ∈ Hm
2 (�; R3). In this caseE2 is called an extension fromHm

2 (�; R3)

to Vm
2 (R

3; R3).

Toobtain sufficient conditionsonaboundedopenset� to have theVm
2 (R

3; R3)-extension
property we can see Dautry and Lions[7], Nĕcas [12] and Adams [1]. The conditions are,
in general, regarding the regularity of the boundary�� of�. For example, if� is a bounded
domain satisfying the Lipschitz boundary condition, then by using the Stein extension
Theorem [1, p. 154] we obtain that� has theVm

2 (R
3; R3)-extension property. We can also

see Theorem 3.10 in [12, p. 80].

Proposition 5.1. If the bounded open set� has theVm
2 (R

3; R3)-extension property,then
for all v ∈ Vm

2 (R
3; R3), the minimal approximation problem

P�,2(v) : min
w∈C�,2(v)

(�Dm(w) + Rm(w)), (5.2)

whereC�,2(v) = {w ∈ Vm
2 (R

3) | R�w = R�v} admits a unique solutionS�,2v in
Vm
2 (R

3; R3). In particular, if R�v ∈ Pm−1,2(�; R3), thenS�,2v ∈ Pm−1,2(R
3; R3).

Proof. The linear mappingR� : Vm
2 (R

3; R3) → Hm
2 (�; R3) is continuous (see[12]) and

satisfies the following properties:

(1) R�(Vm
2 (R

3; R3)) = Hm
2 (�; R3), which results from theVm

2 (R
3; R3)-extension hy-

pothesis.
(2) Ker(R�) ∩ Ker(T2) ⊆ Ker(R�) ∩ Pm−1,2(R

3; R3) = {0}.
(3) Ker(R�) + Ker(T2) is closed sinceKer(T2) is a finite-dimensional vector subspace.

The existence and uniqueness of the solution of problem (5.2) result from the classical
spline theory.
Let us suppose thatR�v = p ∈ Pm−1,2(�; R3) and letp̃ be an extension ofp to R3.

It is clear that̃p ∈ Pm−1,2(R
3; R3) and

(i) R�p̃ = R�v (ii ) �Dm,�(p̃) + Rm,�(p̃) = 0.

It follows thatp̃ = S�,2v ∈ Pm−1,2(R
3; R3). �

Remark 5.1. We can easily show thatS�,2 is a projector onVm
2 (R

3; R3) and satisfies the
following properties:

(1) SεN,2S�,2 = S�,2, ∀ε�0.

(2) S�,2E
(1)
2 = S�,kE

(2)
2 for all extensionsE(1)

2 andE(2)
2 .

(3) J (S�,2E2u)�J (E2u) for all u ∈ Hm
2 (�; R3).

(4) S�,2E2 is an extension.

The elementS�,2E2u is called the minimalVm
2 (R

3; R3)-extension ofu relative to the
semi-normw → √

�Dm,�(w) + Rm,�(w).
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Now we will study the internal convergence result of the interpolating tension splines,
i.e. inVm

2 (R
3; R3). Let us first consider the following assertions:

(A1) For allv ∈ Vm
2 (R

3; R3), lim
N→+∞ S0N,2v = S�,2v in Vm

2 (R
3; R3).

(A2) KerR� = ∩
N∈N

KerAN.

(A3) �N = {xN1 , . . . , xNn(N)} ⊂ �N+1 = {xN+1
1 , . . . , xN+1

n(N+1)} ⊂ �.

Proposition 5.2.We suppose that the open set� has theVm
2 (R

3; R3)-extension property.
Then we have the following implications:

(i) (A1) implies(A2).
(ii) (A2) and(A3) imply (A1).

Proof. (i) (A1) ⇒ (A2).
It is clear thatKerR� ⊂ ∩N∈N KerAN . For all v ∈ ∩N∈N KerAN we haveANv =

0, and consequentlyS0N,2v = 0, ∀N ∈ N. From assertion (A1) we deduce that 0=
limN→+∞ S0N,2v = S�,2v and 0= R�S�,2v = R�v which means thatv ∈ KerR�.

(ii) ((A2) and (A3))⇒(A1).
SinceANS

0
N,2v = ANS�,2v then

Jm,�,�(S
0
N,2v)�Jm,�,�(SN+1v)�Jm,�,�(S�,2v) (5.3)

and ∥∥∥A0S
0
N,2v

∥∥∥2
Rn(0)

+ Jm,�,�(S
0
N,2v)�

∥∥A0S�,2v
∥∥2

Rn(0) + Jm,�,�(S�,2v) ∀N ∈ N.

We recall thatJm,�,�(v) is given byJm,�,�(v) = �Dm,�(v)+Rm,�(v). Since the functional(
‖A0v‖2

Rn(0) + Jm,�,�(v)
)1/2

isanormonVm
2 (R

3; R3), equivalent to theusualnorm||v||Vm ,

then(S0N,2v)N∈N is bounded inVm
2 (R

3; R3). Thus, we can find a subsequence(S0Nk,2
v)k∈N

which weakly converges tow in Vm
2 (R

3; R3). From inequality (5.3) we obtain

Jm,�,�(w)� lim inf
k→+∞ Jm,�,�(S

0
Nk,2

v)�Jm,�,�(S�,2v). (5.4)

For any fixedN ∈ N andNk�N , we have ANS�,2v = ANS
0
N,2v = ANS

0
Nk,2

v and

AN(w − S�,2v) = limk→+∞ AN(w − S0Nk,2
v) = 0 in R3n(N), which means thatANw =

ANS�,2v, ∀N ∈ N, andw − S�,2v ∈ ∩N∈N KerAN = KerR�.
SinceR�w = R�S�,2v, using inequality (5.4) and the uniqueness of solutionS�,2v of

problem (5.2), we conclude thatw = S�,2v.
In the same manner, we can show that every weakly convergent subsequence of

(S0N,2v)N∈N is necessarily weakly convergent toS�,2v, and consequently the sequence

(S0N,2v)N∈N is weakly convergent toS�,2v. From inequalities (5.3), (5.4) and
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A0S�,2v = A0S
0
N,2v, we obtain the norms convergence

lim
N→+∞(‖A0S

0
N,2v‖2Rn(0) + (�Dm,�(S

0
N,2v) + Rm,�(S

0
N,2v)))

= ∥∥A0S�,2v
∥∥2

Rn(0) + (�Dm,�(S�,2v) + Rm,�(S�,2v)).

The weak convergence and the norms convergence imply a strong convergence. This con-
cludes the proof. �

We are now in a position to state the external theorem convergence of the interpolating
tension splines inHm

2 (�; R3).

Theorem 5.1. For all u ∈ Hm
2 (�; R3), let S0

N,2,�u be the restriction to�of the solution of

the problemP2
0(ANu) in Vm

2 (R
3; R3), given by(3.1)and(4.3).If the following hypotheses:

(H1) The open set� has theVm
2 (R

3; R3)-extension property,
(H2) �N = {xN1 , . . . , xNn(N)} ⊂ �N+1 = {xN+1

1 , . . . , xN+1
n(N+1)} ⊂ �, and

(H3) ∀x ∈ �: lim
N→+∞ min

1� i�n(N)
‖ x − xNi ‖R3= 0,

are satisfied,then we havelimN→+∞ S0N,2,�u = u in Hm
2 (�; R3) and consequently in

Cm−1(�; R3).

Proof. The inclusionKerR� ⊂ ∩N∈N KerAN is a consequence of hypothesis (H2). From
the imbedding Sobolev theorem (see[12]), we have

Vm
2 (R

3; R3) ↪→ Hm+1
loc (R3; R3) ↪→ Cm−1(R3; R3);

we deduce that every functionv ∈ ∩N∈N KerAN is continuous on�, i.e.,

∀x ∈ �, ∀ε > 0, ∃�ε > 0, ∀y ∈ �, ‖ x − y ‖R3< �ε ⇒ ‖v(x) − v(y)‖R3 < ε.

Since lim
N→+∞ min

1� i�n(N)
‖ x − xNi ‖R3= 0, there existi andN such that‖ x − xNi ‖R3< �ε;

then∀ε > 0, ‖v(x)‖R3 < ε, and consequentlyv(x) = 0, ∀x ∈ � i.e. v ∈ KerR� and
∩N∈N KerAN ⊂ KerR�.
For all u ∈ Hm

2 (�; R3), let v = E2u ∈ Vm
2 (R

3; R3) whereE2 is an extension from
Hm

2 (�; R3) to Vm
2 (R

3; R3). Since(ANu)N∈N = (ANv)N∈N and hypotheses (H1)–(H2)–
(H3) are satisfied, it follows from Proposition5.2 that limN→+∞ S0N,2E2u = S�,2E2u in

V2(R
3; R3). SinceS0

N,2,�u = R�S
0
N,2E2u, by using the continuity of the mappingR� :

Vm
2 (R

3; R3) → Hm
2 (�; R3) we obtain

lim
N→+∞ S0N,2,�u = lim

N→+∞R�S
0
N,2E2u = R�S�,kE2u = u, in Hm

2 (�; R3).

The convergence inCm−1(�; R3) is deduced from the continuous imbeddingHm
2 (�; R3)

↪→ Hm+1(�; R3; R3) and the imbedding Sobolev theorem (see[12]) Hm+1(�; R3) ↪→
Cm−1(�; R3). �
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Now we state the internal convergence result of the smoothing vectorial tension splines.
We consider the following assertions:

(A1′) For allv ∈ Vm
2 (R

3; R3) andε > 0, lim
N→+∞ SεN,2v = S�,2v in Vm

2 (R
3; R3).

(A2′) For allv ∈ Vm
2 (R

3; R3), if R�v ∈ Hm
2 (�; R3) \ Pm−1,2(�; R3) then

lim
N→+∞

n(N)∑
i=1

‖ v(xNi ) ‖2
R3n(N)= +∞.

(A3′) �N = {xN1 , . . . , xNn(N)} ⊂ �N+1 = {xN+1
1 , . . . , xN+1

n(N+1)} ⊂ �.

Proposition 5.3.We suppose that the open set� has theVm
2 (R

3; R3)-extension property.
We have the following implications:

(i) (A1′) implies(A2′).
(ii) (A2′) and(A3′) imply (A1′).

Proof. (i) (A1′) ⇒ (A2′).
For all ε > 0, for allN ∈ N and for allv ∈ Vm

2 (R
3; R3) the minimization property of

SεN,2v implies that

〈T2SεN,2v|T2SεN,2v〉Y2
+ ε ‖ AN(S

ε
N,2v − S�,2v) ‖ �〈T2S�,2v|T2S�,2v〉Y2

Let us suppose that(A1′) is true, it follows that

lim
N→+∞〈T2SεN,2v|T2SεN,2v〉Y2

= 〈T2S�,2v|T2S�,2v〉Y2
,

and consequently

lim
N→+∞ ‖ AN(S

ε
N,2v − S�,2v) ‖R3n(N)= 0. (5.5)

If (A2′) is false, then there existsu ∈ V2(R
3; R3) and there existsM > 0 such thatR�v ∈

Hm
2 (�; R3) \ Pm−1,2(�; R3) and ∀N ∈ N, ||ANu||R3n(N) �M. By using the Cauchy–

Schwarz inequality, we have

| 〈AN(S
ε
N,2v − S�,2v) | ANu

〉
R3n(N) | �M ‖ AN(S

ε
N,2v − S�,2v) ‖R3n(N) .

According to relation (5.5), we obtain that

lim
N→+∞ | 〈AN(S

ε
N,2v − S�,2v) | ANu

〉
R3n(N) |= 0.

SinceAN(S�,2v) = ANv for all v ∈ Vm
2 (R

3; R3)andbyusing the characterizationequation
(4.7), we obtain〈

T2S
ε
N,2v|T2S�,2u

〉
Y2

+ ε
〈
AN(S

ε
N,2v − S�,2v)|ANu

〉
R3n(N) = 0.
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We deduce that limN→+∞
〈
T2S

ε
N,2v|T2S�,2u

〉
Y2

= 0 for all v ∈ Vm
2 (R

3; R3). SinceSεN,2

S�,2u = S�,2u, we obtain in particular forv = S�,2u that

0 = lim
N→+∞

〈
T2S

ε
N,2S�,2u|T2S�,2u

〉
Y2

= 〈T2S�,2u|T2S�,2u
〉
Y2

= ||T2S�,2u||2Y2
.

ThenS�,2u ∈ Ker(T2) = Pm−1,2(R
3; R3) and consequentlyR�u = R�S�,2u belongs to

Pm−1,2(�; R3), which is impossible.
(ii) ((A2 ′) and(A3′))⇒ (A1′).
Let J ε

N(u) = �Dm,�(u) + Rm,�(u) + ε ‖ ANu ‖2
R3n(N). From assertion(A3′) we obtain

J ε
p(u)�J ε

N(u), ∀p�N. (5.6)

Foru = SεN,2v − S�,2v with v ∈ V2(R
3; R3), inequality (5.6) becomes

J ε
p(S

ε
N,2v − S�,2v)�J ε

N(S
ε
N,2v − S�,2v) ∀p�N, (5.7)

and the characterization equation (4.7) becomes〈
T2S

ε
N,2v|T2(SεN,2v − S�,2v)

〉
Y2

= −ε||AN(S
ε
N,2v − S�,2v)||2R3n(N).

Furthermore, since

||T2(SεN,kv − S�,kv)||2Y2
= 〈

T2S
ε
N,2v|T2(SεN,2v − S�,2v)

〉
Y2−〈T2S�,2v|T2(SεN,2v − S�,2v)
〉
Y2
,

it follows that

J ε
N(S

ε
N,2v − S�,2v) = −〈T2S�,2v|T2(SεN,2v − S�,2v)

〉
Y2= −〈T2S�,2v|T2SεN,2v

〉
Y2

+ ||T2S�,2v||2Y2
.

(5.8)

Using theminimization property ofSεN,2v and the fact thatANv = ANS�,2v for allN ∈ N,
we obtain

||T2SεN,2v||2Y2
+ ε||AN(S

ε
N,2v − S�,2v)||2R3n(N) � ||T2S�,2v||2Y2

.

Thus, from (5.8) by using Cauchy–Schwarz inequality, we obtain

J ε
N(S

ε
N,2v − S�,2v)�2||T2S�,2v||2Y2

∀N ∈ N. (5.9)

From Eqs. (5.6) and (5.9), we deduce that

J ε
0 (S

ε
N,2v − S�,2v)�2||T2S�,2v||2Y2

∀N ∈ N. (5.10)

Since
√
J ε
0 ( . ) is a norm onVm

2 (R
3; R3) equivalent to the usual norm|| . ||Vm , then

(SεN,2v − S�,2v)N∈N is a bounded sequence inVm
2 (R

3; R3). Thus, there is a subsequence

(SεNk,2
v−S�,2v)k∈N whichweaklyconverges inVm

2 (R
3; R3) toanelementu ∈ Vm

2 (R
3; R3).

Then

J ε
N(u)� lim inf

k→+∞ J ε
N(S

ε
Nk,2

v − S�,2v)�2||T2S�,2v||2Y2
∀N ∈ N,
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and consequently the sequence of positive real numbers(||ANu||R3n(N))N∈N is bounded.
It follows from assertion(A2′) thatR�u ∈ Pm−1,2(�; R3) and consequentlyS�,ku ∈
Pm−1,2(R

3; R3) = Ker T2 (see Proposition5.1). By using Eqs. (5.7) and (5.8) we obtain

J ε
0 (S

ε
Nk,2

v − S�,2v)�J ε
Nk
(SεNk,2

v − S�,2v) = −〈T2S�,2v|T2(SεNk,2
v − S�,2v)

〉
Y2
.

Thus

0� lim
k→+∞ J ε

0 (S
ε
Nk,2

v − S�,2v)� − lim
k→+∞

〈
T2S�,2v|T2(SεNk,2

v − S�,2v)
〉
Y2
. (5.11)

It is well known that the splineS�,2v satisfies the characterization equation〈
T2S�,2v|T2w

〉
Y2

= 0 ∀w ∈ KerR�. (5.12)

By takingw = u − S�,2u in Eq. (5.12), we obtain〈
T2S�,2v|T2u

〉
Y2

= 〈T2S�,2v|T2S�,2u
〉
Y2

= 0.

The last equation is equal to zero, becauseS�,ku ∈ Ker T2. The weak convergence of the
subsequence(SεNk,2

v − S�,2v)k∈N, to ugives

lim
k→+∞

〈
T2S�,2v|T2(SεNk,2

v − S�,2v)
〉
Y2

= 〈T2S�,2v|T2u
〉
Y2

= 0.

From inequality (5.11), we obtain limk→+∞ J ε
0 (S

ε
Nk,2

v − S�,2v) = 0. It follows that
limk→+∞ ||SεNk,2

v − S�,2v||Vm = 0, i.e., the sequence(SεNk,2
v)k∈N converges toS�,2v

in Vm
2 (R

3; R3). In the same manner, we can show that every convergent subsequence of
(SεN,2v)N∈N is necessarily convergent toS�,2v and consequently the sequence(SεN,2v)N∈N

is convergent toS�,2v. This concludes the proof.�

Remark 5.2. (1) If assertions(A2′) and(A3′) of Proposition5.3 are satisfied, then can
obviously be verified thatKerR� = ∩

N∈N
KerAN . From Proposition 5.2 we deduce that

lim
N→+∞ S0N,2v = S�,2v in Vm

2 (R
3; R3).

(2) Propositions 5.2 and 5.3 were proved by Atteia [4], in the particular case where� =
R3. In this caseKerR� = {0Vm

2 (R3;R3)
} andS�,2 is the identity operator ofVm

2 (R
3; R3).

Now we state the theorem relative to the convergence inHm
2 (R

3; R3) of smoothing
tension splines.

Theorem 5.2. For all u ∈ Hm
2 (�; R3), letSε

N,2,�u be the restriction to� of the solution of

the problemPε
2 (ANu) in Vm

2 (R
3; R3), given by(3.1)and(4.3).If the following hypotheses:

(H1) The open set� has theVm
2 (R

3; R3)-extension property,
(H2) �N = {xN1 , . . . , xNn(N)} ⊂ �N+1 = {xN+1

1 , . . . , xN+1
n(N+1)} ⊂ �,
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(H3) For all v ∈ Vm
2 (R

3), if R�v ∈ Hm
2 (�; R3) \ Pm−1,2(�; R3) then

lim
N→+∞

n(N)∑
i=1

‖ v(xNi ) ‖2
R3= +∞,

are satisfied,then for allε�0,we havelimN→+∞ SεN,2,�u = u in Hm
2 (�; R3) and conse-

quently inCm−1(�; R3).

Proof. It is analoguous to the proof of Theorem5.1. �
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